A novel member of the serpin superfamily is encoded on a circular plasmid-like DNA species isolated from rabbit cells

C. Upton, R.W. Carrell* and G. McFadden

Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada and *Haematology Department, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, England

Received 3 August 1986

A novel member of the serpin family of serine protease inhibitors is presented. A plasmid-like DNA was isolated from rabbit cells by its homology to the genome of Shope fibroma virus (SFV), a tumorigenic poxvirus of rabbits, and was shown elsewhere to encode a serpin-like protein [(1986) Mol. Cell. Biol. 6, 265–276]. Although significant DNA homology exists between the rabbit plasmid serpin open reading frame and the SFV terminal inverted repeat DNA there is no intact serpin counterpart encoded by this region of the SFV genome. The alignment of the novel plasmid-borne polypeptide with the serpin family of proteins confirms its status within this group.

Shope fibroma virus Poxvirus spc DNA Serpin Serine protease inhibitor

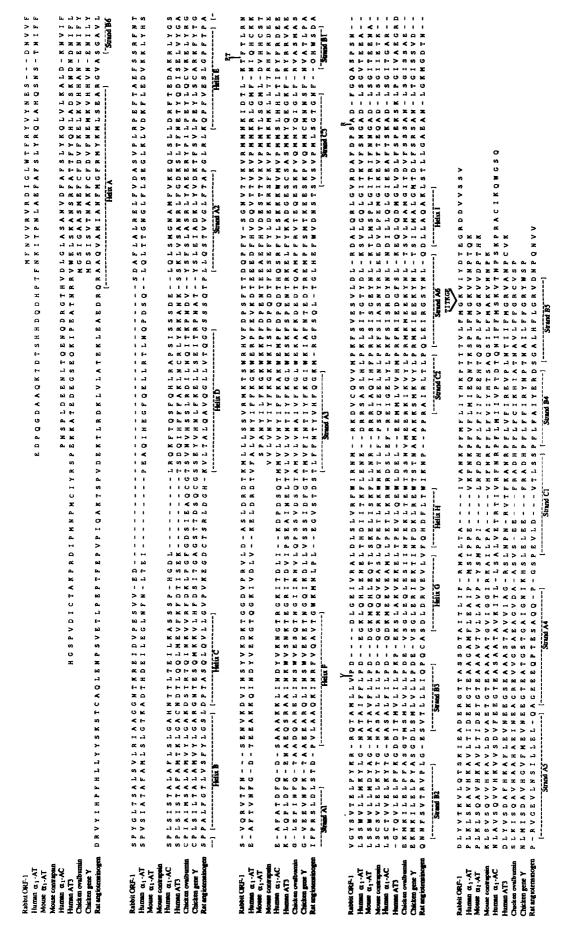
1. INTRODUCTION

Members of the serpin (serine protease inhibitors) superfamily (review [1,2]) comprise a variety of distinct but undoubtedly related proteins, not all of which have a known protease inhibitor function. Recently several of the blood plasma protease inhibitors have attracted considerable attention in terms of the therapeutic use of genetically engineered serpins to treat genetic deficiencies, notably that of plasma protein α_1 -antitrypsin [3]. Here we describe the serendipitous discovery of a novel member of the serpin superfamily from rabbit cells. This serpin-like protein is derived from the translation of an open reading frame (ORF) on an extrachromosomal plasmid-like DNA species isolated from rabbit cells [4]. This plasmid DNA species was cloned by virtue of its DNA sequence homology to the genome of Shope fibroma virus (SFV), a tumorigenic poxvirus of rabbits [4]. The presence of small polydisperse extrachromosomal circular (spc) DNAs in eukaryotic cells has been observed for a number of years (review [5,6]). The size distribution and number of spc DNAs is found to vary with development, growth state and mitotic capacity of the cell, but the function of these molecules is poorly understood [5-7]. SFV is a tumorigenic leporipoxvirus which is capable of inducing fibromas in rabbits, its natural host [8-10]. Like all poxviruses, SFV replicates in the cytoplasm of infected cells and its large (160 kb) linear ds DNA genome [10] probably encodes all of the proteins required for the replication and transcription of the viral DNA [11,12]. The relationship between SFV and spc DNAs of the host cell is unclear but recombination with these host DNAs may be one way by which the cytoplasmically replicating poxviruses are able to enhance their pool of genetic information [4].

The rabbit sequence described here was discovered when the cloned BamHI fragments of the SFV genome were examined for the presence of host-related sequences which might be implicated in the tumorigenic phenotype of this virus [4]. Unexpectedly, it was found that a 4.8 kb covalently closed circular (CCC) species of DNA, present in both total and Hirt preparations of rabbit (SIRC cell) DNA, hybridized to recombinant plasmids derived from a defined region of the terminal inverted repeats (TIR) of SFV [4]. Analysis of the

DNA sequence of one clone (pSIC9) which contains 1.9 kb of the plasmid sequence confirmed the homology with SFV TIR sequences found by Southern blotting and revealed the presence of one intact and one truncated ORF [4]. The truncated ORF (ORF-2) was found to be identical to the Nterminus of ORF-T8 in the SFV TIR, but the function of this viral/plasmid gene product has not yet been clarified. The intact ORF (ORF-1) from pSIC9 has no complete counterpart in the SFV TIR, but significant DNA homology exists between the two sequences in this region, although several small gaps plus one of 819 bases must be inserted in order to align these homologies. Translation of this rabbit plasmid ORF-1 yields a 361 amino acid polypeptide which has some homology with human α_1 -antichymotrypsin, as determined by computer search through the National Research Foundation protein Biochemical database [4]. Here we report the complete amino acid sequence of the rabbit plasmid ORF-1 and confirm that it represents a novel bona fide member of the serpin superfamily.

2. MATERIALS AND METHODS


The DNA sequence for pSIC9 has been reported [4]. Analysis of the DNA sequence, protein database searches and alignment of the polypeptides were performed using the core library programs of the BIONET computer resource (IntelliGenetics Inc.). A final alignment of the ORF-1 polypeptide to other members of the serpin family utilized the programme of A.M. Lesk, M. Levitt and C. Chothia [1] which uses the Needleman-Wunsch algorithm modified to penalise insertion of gaps in regions of secondary structure based on that of α_1 -antitrypsin.

3. RESULTS AND DISCUSSION

The complete amino acid and DNA sequences with the 5'- and 3'-flanking DNA regions of the rabbit plasmid ORF-1 are shown in fig.1. It should

Fig.1. Amino acid sequence of ORF-1, translated from the rabbit plasmid clone pSIC9. The full DNA sequence of clone pSIC9 (complementary strand) is presented in fig.6 of [4] where nucleotide no.1678 corresponds to no.1 of this figure.

10 ACAGGCAAGA CACG	20 3 TTGGAT CGGTTGAAG		50 GGGACGCGTG AT	60 70 FAAAACGC GAGTCGTTCG
BO CCCCCACCCT TTAT	90 10		120	130 140
COCOONCOO! IINI	155			STATCTGG TCCTCGTCTT
	GTG CGC GTT CGA			TC CGA TAC GTC
MET Phe Asn Val	. Val Arg Val Arg	Asp Ile Gly	Leu Trp Thr Ph	ie Arg Tyr Val
200 TAC AAC GAA AGC	215 GAC AAC GTC GTG	TTC TCA CCG	230 TAC GGC TTG M	245 CC TCC GCG TTG
	Asp Asn Val Val			
260		275	290	
	ATC GCG GCG GGC			
305	320	335		350
GAA TOO GTO GTG	GAG GAC TCC GAC	GCC TTT CTC		AG TTG TTC GTA
Glu Ser Val Val	Glu Asp Ser Asp	Ala Phe Leu	Ala Leu Arg G	lu Leu Phe Val
365 GAC GCA TCC GTT	380 CCG TTA CGT CCC		395 GCG GAG TTC TO	410 CC TCG CGA TTC
	Pro Leu Arg Pro			
	425	440	45	
	CAA CGC GTG ACG			
470	485		500	515
AAC TCG TAC GTT	AAG GAT AAG ACG	GGA GGA GAC	GTC CCA CGC GT	TA TTG GAC GCC
	Lys Asp Lys Thr	GIA GIA YED	Val Pro Arg Va	il Leu Asp Ala
530 TCC CTA GAC CGA	CAT ACT AAA ATG	545 CTG CTA TTG	AGC TCC GTT CC	IT ATG AAG ACG
Ser Leu Asp Arg	Asp Thr Lys Met	Leu Leu Leu	Ser Ser Val An	g Met Lys Thr
575	590	605		620
	GTA TTC GAC CCT			
635	650		665	680
	TAC AAG GTA CGT			
	695	710	72	
	CTT AGA AAC GTG	GGA TAC TCC	GTA ACG GAA CT	IG CCG TAT AAA
	: Leu Arg Asn Val	Gly Tyr Ser		iu Pro Tyr Lys
740 CGG CGT CAA ACG	755 G GCC ATG TTG CTC	GTC GTT CCG	770 GAC GAC TTG GC	785 GA GAG ATC GTG
	: Ala Met Leu Leu			
CGG GCC CTC GAT	CTT TCT CTA GTA	CGC TTC TGG	ATA OGC AAC A	
Arg Ala Leu Asp	Leu Ser Leu Val		ite and van sa	
845 GTG TGT CAG GTG	860 GTA ATG CCC AAG	875 TTC TCC GTC	GAA TOG GTC CT	890 IG GAT CTG AGG
Val Cys Gln Val	Val Met Pro Lys	Phe Ser Val	Glu Ser Val L	nu Asp Leu Arg
905	920		935	950
	AGA CTG GGG GTG			
	965	980		95
TTC GGT CAG GCG	TCC CCG TCG AAC	GAT CTA TAC	GTC ACG AAG G	TG TTA CAG ACG
1010	1025		1040	1055
TCC ANG ATA GAG	GCG GAC GAA CGG	GGA ACG ACG	GCG TCG AGC G	AC ACA GCC ATC
Ser Lys Ile Glu	n Ala Asp Glu Arg		Ala Ser Ser A	pp Thr Ala 11e
1070 ACC CTC ATC CCC) : AGG AAC GCC CTC	ACG GCG ATC	1100 GTG GCG AAC A	AA CCG TTT ATG
	Arg Asn Ala Leu			
1115	1130	1145		1160
	CAC AAG CCT ACA His Lys Pro Thr			
1175	1190		1205	1220
AAG GGT GAA AAA	GTA ATA TAC GAT	ACG GAG GGT	CGA GAT GAT GT	
•	236 1246	1256	1266	1276 1286
GTA TAA ACTCTTT	TTG AAGGGTAAAC T			
Val .				

members of the serpin superfamily. eight 1 with amino acid sequence rabbit ORF-1 Alignment of the

be noted that this sequence is translated from a single continuous pSIC9 ORF DNA sequence. In comparison, introns are present within the genes of ovalbumin [13], α_1 -antitrypsin [14], angiotensinogen [15] and antithrombin III [16,17], although only in angiotensinogen and antithrombin III are they similarly arranged [15]. The absence of introns from ORF-1 indicates that this rabbit plasmid species may have been originally derived by reverse transcription. In fig.2 the protein sequences of the rabbit plasmid ORF-1, human α_1 -antitrypsin (α_1 -AT) [18], mouse α_1 -AT [19], human α_1 -antichymotrypsin (α_1 -AC) [20], mouse contrapsin [19], human antithrombin III (AT3) [21], chicken ovalbumin [22], chicken gene Y [13] and rat angiotensinogen [15] have been aligned to minimize the insertion of gaps within regions of secondary structure based on that of α_1 -AT. There are 18 residues which are conserved through all the serpins shown and in 133 positions the amino acid is conserved in at least 50% of the proteins. As expected from the alignment of the other serpins there is considerable variation at the N-terminus of the rabbit plasmid ORF-1. An unexpected finding is the complete deletion of the D helix, confirmed by the presence of the conserved sequence in the C helix and the A2 strand that flank each side of the missing D helix. Evidence that the overall conformation is retained at the reactive center is provided by the homologies of the A4 strand region (fig.3). This strand forms the loop that must be present in the native serpins [1] to join the P₁ and P₁' residues of the reactive center. There is strong homology throughout the family at the hinge region of this loop with the typical sequence Glu:polar:Gly:Thr/Ser:Glu



Fig. 3. Alignment of the reactive centers of 16 members of the serpin superfamily [1]. The normal cleavage site for the proteinases inhibited by the serpins is after the P₁ residue. Conserved and consensus sequences are indicated.

which is conserved in ORF-1 as Glu: Arg: Gly: Thr: Thr. Furthermore, the ORF-1 sequence has the typical distance of 16 residues between the hinge and the putative P₁ reactive center residue, with the implication that the protein retains the stretched loop conformation necessary for inhibitory function. The common tertiary structure of the serpins is also supported by the even distribution of conserved residues throughout their sequence which can be correlated with the structural features of the α_1 -AT model. Examples of this are the conservation of glycine residues at interstrand hinges and salt bridges linking areas of secondary structure. Two Glu-Lys bridges have been maintained in most serpins (fig.2; G7-B₅9 and A₅16-A₆1) with the exception of angiotensinogen, barley protein Z and ORF-1, each of which has lost one complete bridge.

The alignment of the reactive center region of the serpins is shown in fig.3 where more distantly related proteins are included [1,23-27] in addition to a conserved and consensus sequence. The structure of each of the serpins provides a clue to its inhibitory activity and likely target proteinase. The P₁ residue of the reactive center acts as a potential cleavage site for the target enzyme with a specificity that is further increased by the P₂ residue. This is of course an approximate rule but it does allow an estimate as to the target enzymes of serpins of dubious inhibitory activity. Thus the rabbit plasmid ORF-1 fits the description of an Argserpin and if it does have an inhibitory function its target is likely to be a serine protease cleaving after arginine, probably at a Pro: Arg: X sequence.

DNA homology between the SFV TIR and pSIC9 extends across the full 1.9 kb plasmid insert. However, it is obvious that only one of the ORFs (ORF-2, equivalent to SFV ORF-T8) present on pSIC9 has been maintained by SFV [4]. Thus it appears that SFV may have originally acquired a large fraction of the rabbit plasmid sequences but those genes which did not confer a selectable advantage to the virus (including the serpin ORF) were not faithfully maintained in the SFV genome.

ACKNOWLEDGEMENTS

This work was supported by the Alberta Heritage Foundation for Medical Research (AHFMR), the National Cancer Institute of Canada and the Alberta Cancer Board. Computer costs of the BIONET resource were funded by Public Health Service grant 1-441-RR01685-01 from the National Institutes of Health. G.M. is an AHFMR scholar and C.U. a postdoctoral fellow. R.W.C. was supported by the Medical Research Council of New Zealand.

REFERENCES

- Carrell, R.W. and Boswell, D.R. (1986) in: Proteinase Inhibitors (Barrett, A. and Salvesen, G. eds) pp.403-420, Elsevier Science Publishers, Amsterdam, New York, in press.
- [2] Travis, J. and Salvesen, G.S. (1983) Annu. Rev. Biochem. 52, 655-709.
- [3] Boswell, D.R. and Carrell, R.W. (1986) TIBS 11, 102-103.
- [4] Upton, C. and McFadden, G. (1986) Mol. Cell. Biol. 6, 265-276.
- [5] Esser, K., Kuck, U., Lang-Hinrichs, C., Lemke, P., Osiewacz, H.D., Stahl, U. and Tudzynski, P. (1986) Plasmids of Eukaryotes, Fundamentals and Applications, Springer.
- [6] Yamagishi, H. (1986) Bioessays 4, 218-221.
- [7] Smith, C.A. and Vinograd, J. (1972) J. Mol. Biol. 69, 163-178.
- [8] Shope, R.E. (1932) J. Exp. Med. 56, 593-802.
- [9] Wills, A., Delange, A.M., Gregson, C., Macaulay,C. and McFadden, G. (1983) Virology 130, 403-414.
- [10] Delange, A.M., Macaulay, C., Block, W., Meuller, T. and McFadden, G. (1984) J. Virol. 50, 408-416.
- [11] Moss, B. (1985) in: Virology (Fields, B.N. eds.) pp.685-703, Raven, New York.
- [12] Pogo, B.G.T. and Dales, S. (1981) Biology of Poxviruses, Springer, Berlin.
- [13] Heilig, R., Muraskowsky, R., Kloepfer, C. and Mandel, J.L. (1982) Nucleic Acids Res. 10, 4363-4382.
- [14] Leicht, M., Long, G.L., Chandra, T., Kurachi, K., Kidd, V.J., Mace, M., jr, Davie, E.W. and Woo, S.L.C. (1982) Nature 297, 655-659.
- [15] Tanaka, T., Ohkubo, H. and Nakanishi, N. (1984)J. Biol. Chem. 259, 8063-8065.
- [16] Jagd, S., Vibe-Pedersen, K. and Magnusson, S. (1985) FEBS Lett. 193, 213-216.
- [17] Prochownik, E.V., Clark Bock, S. and Orkin, S.H. (1985) J. Biol. Chem. 260, 9608-9612.
- [18] Carrell, R.W., Jeppsson, J., Laurell, C., Brennan, S.O., Owen, M.C., Vaughan and Boswell, D.R. (1982) Nature 298, 329-334.
- [19] Hill, R.E., Shaw, R.K., Boyd, P.A., Baumann, H. and Hastie, N.D. (1984) Nature 311, 175-177.

- [20] Chandra, T., Stackhouse, R., Kidd, V.J., Robson, K.J.H. and Woo, S.L.C. (1983) Biochemistry 22, 5055-5061.
- [21] Chandra, T., Stackhouse, R., Kidd, V.J. and Woo, S.L.C. (1983) Proc. Natl. Acad. Sci. USA 80, 1845-1848.
- [22] McReynolds, L., O'Malley, B.W., Nisbet, A.D., Fothergill, J.E., Givol, D., Fields, S., Robertson, M. and Brownlee, G.G. (1978) Nature 273, 723-728.
- [23] Hejgaard, J., Rasmussen, S.K., Brandt, A. and Svendsen, I. (1985) FEBS Lett. 180, 89-94.

- [24] Griffith, M.J., Noyes, C.M. and Church, F.C. (1985) J. Biol. Chem. 260, 2218-2225.
- [25] Salvesen, G.S., Catanese, J.J., Kress, L.F. and Travis, J. (1985) J. Biol. Chem. 260, 2432-2436.
- [26] Kurachi, K., Chandra, T., Friezner Degan, S.J., White, T.T., Marchioro, T.L., Woo, S.L.C. and Davie, E.W. (1981) Proc. Natl. Acad. Sci. USA 78, 6826-6830.
- [27] Wiman, B. (1986) in: Proteinase Inhibitors (Barrett, A. and Salvesen, G. eds) pp.477-488, Elsevier Science Publishers, Amsterdam, New York, in press.